Search results for "quantum trajectories"

showing 3 items of 3 documents

Quantum collision models: Open system dynamics from repeated interactions

2022

We present an extensive introduction to quantum collision models (CMs), also known as repeated interactions schemes: a class of microscopic system-bath models for investigating open quantum systems dynamics whose use is currently spreading in a number of research areas. Through dedicated sections and a pedagogical approach, we discuss the CMs definition and general properties, their use for the derivation of master equations, their connection with quantum trajectories, their application in non-equilibrium quantum thermodynamics, their non-Markovian generalizations, their emergence from conventional system-bath microscopic models and link to the input-output formalism. The state of the art o…

Quantum non-Markovian dynamicsQuantum PhysicsQuantum opticsQuantum weak measurementsInput–output formalismFOS: Physical sciencesGeneral Physics and AstronomyRepeated interactionsSettore FIS/03 - Fisica Della MateriaOpen quantum systemsQuantum trajectoriesCascaded master equations; Input-output formalism; Open quantum systems; Quantum non-Markovian dynamics; Quantum optics; Quantum thermodynamics; Quantum trajectories; Quantum weak measurements; Repeated interactionsCascaded master equationsQuantum Physics (quant-ph)Quantum thermodynamicsPhysics Reports
researchProduct

(Un)conditioned open dynamics in quantum optics

2021

The study of the dynamics of open quantum systems sheds light on dissipative processes in quantum mechanics. Any system under continuous measurement is open and the act of measuring induces abrupt changes of the system’s state (collapses). The evolution conditioned to measurement records generates the so-called quantum trajectories. A continuous (unconditioned) evolution of the system is recovered by averaging over a large number of trajectories. Historically this kind of evolution has been the main focus of theoretical investigations. In this dissertation we consider both conditional and unconditional dynamics of quantum optical systems. Unconditioned dynamics is studied through the collis…

Settore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciOpen quantum systemQuantum trajectories Quantum mechanics statistical mechanics
researchProduct

Microscopic biasing of discrete-time quantum trajectories

2021

We develop a microscopic theory for biasing the quantum trajectories of an open quantum system, which renders rare trajectories typical. To this end we consider a discrete-time quantum dynamics, where the open system collides sequentially with qubit probes which are then measured. A theoretical framework is built in terms of thermodynamic functionals in order to characterize its quantum trajectories (each embodied by a sequence of measurement outcomes). We show that the desired biasing is achieved by suitably modifying the Kraus operators describing the discrete open dynamics. From a microscopical viewpoint and for short collision times, this corresponds to adding extra collisions which enf…

PhysicsQuantum PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciPhysics and Astronomy (miscellaneous)Quantum dynamicsMaterials Science (miscellaneous)FOS: Physical sciencesbiased dynamicsOpen system (systems theory)Atomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della Materiabiased dynamics; discrete-time quantum dynamics; collision model; quantum trajectoriesOpen quantum systemClassical mechanicsquantum trajectoriesDiscrete time and continuous timeQubitTrajectorycollision modelMicroscopic theoryElectrical and Electronic EngineeringQuantum Physics (quant-ph)Quantumdiscrete-time quantum dynamics
researchProduct